rozs schreef:
kunt u gewoon vinden bij wikipedia.
Vermogensverliezen
De stroom I zorgt ervoor dat in leidingen vermogensverlies door warmte-ontwikkeling ontstaat.
Bij kabels voor 10 kV en bij hoogspanningslijnen is er ook een element waar rekening mee moet worden gehouden, namelijk de capaciteit. Het blijkt dat tussen de geleiders onderling en tussen de geleiders en aarde een bepaalde capaciteit C aanwezig is die voor een zogenaamde laadstroom zorgt. Deze laadstroom maakt dat de bedrijfsstroom toeneemt, waardoor de vermogensverliezen en de spanningsverliezen groter worden. De grootte van de capaciteit en de laadstroom hangt samen met de lengte van de leiding, de onderlinge afstand van de geleiders en de afstand naar aarde. De formules voor het berekenen zijn vrij ingewikkeld.
Bij de hoogspanningslijnen is nog een extra element werkzaam, dat verliezen oplevert, namelijk de isolatieweerstand. De isolatieweerstand RA (A als afkorting voor "aarde") geeft aan dat er tussen de geleider en de aarde geen oneindig hoge weerstand aanwezig is, maar dat via de isolatoren, afhankelijk van uitwendige omstandigheden als vocht en vuil, een zekere geleiding ontstaat en kleine lekstromen worden gevormd, waardoor er vermogensverlies optreedt.
Verder treedt er bij spanningen > 100 kV een verschijnsel op, dat wordt aangeduid met 'corona'. Corona ontstaat doordat de lucht om een geleider doorslaat (ioniseert), zodra de veldsterkte om die geleider de doorslaggrens van lucht overschrijdt, waardoor er ook verlies ontstaat. Het totale vermogensverlies PA , dat door de aanwezigheid van RA ontstaat, wordt uitgedrukt als PA = U2/RA (watt). Voor dit verlies wordt meestal gemiddeld 1 kW/km aangehouden.